
BCE-Processor: Boost Up Event Processing for

Large-scale Sensor-rich Ubiquitous Environment
Jinwon Lee1, Youngki Lee1, Seungwoo Kang1, SangJeong Lee1, Yunseok Rhee2, Junehwa Song1

1
Computer Science, KAIST

2
Hankuk University of Foreign Studies

Daejeon, 305-701, Republic of Korea Yongin, 449-791, Republic of Korea

{jcircle, youngki, swkang, peterlee, junesong}@nclab.kaist.ac.kr, rheeys@hufs.ac.kr

1. INTRODUCTION
In this work, we are designing and developing a novel high-

performance event detection framework to address the unique

challenges of advanced large-scale monitoring applications,

proliferating in the near future (e.g., large-scale urban sensor

networks, surveillance, logistics, battlefield watcher). We envision

that a fully-functioning event processing framework will be

compelling in upcoming sensor-rich ubiquitous environments to

facilitate the monitoring applications. On top of it, a new

generation of applications will thrive to enrich personal as well as

public services.

The emerging large-scale monitoring applications will be

situation-aware; the applications proactively detect the

occurrences of interested events and trigger proper actions

promptly. They commonly rely on massive, real-time event

processing over voluminous data streams continuously generated

from numerous high-rate sensors, mobile devices, or agents that

are increasingly deployed in surrounding spaces or even on the

Internet. Moreover, individual users issue numerous monitoring

requests, personalized to their own needs; they also expect real-

time responses and are not tolerant of stale events and delayed

responses. These remarkable scale and complexities of the

applications will definitely make existing event processing

systems almost impossible to support them effectively.

As the first attempt to enable such large-scale monitoring

applications, we propose BCE-Processor, a high-performance

Border Crossing Event (BCE) detection framework. It effectively

achieves semantic and processing requirements newly arising in

the large-scale, senor-rich ubiquitous environments. We take note

of the practical importance of BCEs. A BCE is intuitively

represented as a data stream crossing the borders of a user-

specified interest range. Many scenarios [2][5] show that border

crossing is an important and frequently-used primitive event. To

facilitate the massive processing of BCEs, we specify a set of

BCEs in relation to an interest range in a data-centric manner.

More importantly, we develop a high-performance processing

mechanism, which evaluates a large number of queries over

voluminous data streams in a shared and incremental manner.

Thereby, BCE-Processor achieves excellent processing

performance and low storage cost. In particular, we design BCE-

Processor that supports a one-dimensional as well as a multi-

dimensional border. We are currently working on supporting

diverse shapes of interested borders such as convexes, general

polygons and circles beyond rectangles to fully reflect practical

requirements of various real-world applications.

We believe that, as a primitive event, BCE will serve various

useful complex events, e.g., RTE (Region Transition Event).

Note that BCE-Processor directly operates on the high-rate input

data streams and generates much lower-rate BCEs by efficiently

filtering out unnecessary data (see Figure 1). Thus, the

performance of subsequent event processing can be significantly

accelerated through BCE-Processor.

Our research can be considered as a step to bridge two

independently evolved research efforts, i.e., data stream

processing and event processing. More importantly, it overcomes

their limitations for upcoming sensor-rich ubiquitous

environments. In particular, we envision the necessity of high-

performance event detection, i.e., extracts meaningful patterns of

data (e.g., border crossing or point of inflection on sensor

readings) as primitive events, and further elaborates on their

performance issues. Using our research as a basis, we believe

research on data stream processing will be extended to defining

and detecting various primitive events. On the other hand,

research on event processing can be enriched by composing the

events derived from data streams as well as achieving high

performance. An interesting research can be found on this line in

EStream [3], which envisioned the necessity of combining the two

domains ahead.

A prototype implemented on an off-the-shelf desktop PC with a

CPU of 3 GHz effectively processes events generated by over

600,000 moving people, covering a city. Furthermore, we have

built a couple of interesting monitoring applications such as a

ubiquitous taxi dispatcher and a battlefield watcher on top of

BCE-Processor, and demonstrated them to the public.

2. RELATED WORK
Our study is the first attempt to detect a large number of primitive

events in large-scale sensor-rich ubiquitous environments.

DSMSs (Data Stream Management Systems) [4] have recently

been receiving an attention, focusing on generic system-level

abstractions and performance optimizations for stream-based

monitoring applications. However, event processing was not the

main concern in this context and has not been studied extensively.

The focus of DSMSs was on supporting continuous queries, i.e.,

the extension of relational query language for continuous

execution, where a basic processing unit is a data tuple.

Event processing [1] has been an important issue for a long time

in many research areas, e.g. active databases, event processing

systems, sensor networks, spanning diverse application domains,

e.g., logistics, surveillance and facility management, B2B

integration, healthcare. They concentrate on supporting various

logical and temporal compositions (e.g., SEQ, AND, OR, NOT)

of inputs, where a unit of composition is a primitive event. Event

processing systems are expressive enough to specify diverse

events on data streams. However, they are still premature to

support upcoming large-scale system environments. As mentioned,

such systems should be able to effectively handle a massive

amount of inputs, requiring highly scalable processing. The

trigger mechanisms in DBMSs are limited in scale; only a few

triggers per table are allowed. Moreover, in existing systems, the

number of registered events as well as the input rates has not been

assumed to be very high, e.g., compared to those for data stream

processing [3]. They would increase significantly in the upcoming

sensor-rich ubiquitous environments.

3. EVENT DETCTION FRMAWORK

3.1 Event Detection Query
We expect that future event detection queries will handle a

number of data sources at the same time in a uniform way. Such a

query specification will proliferate as large-scale applications tend

to be interested in identifying events collectively regarding all

data stream sources rather than the events for a specific source. In

many sensor network and location-based systems, such an

approach is importantly recognized as a data-centric paradigm.

Currently, we propose a Border Monitoring Query (BMQ) to

collectively detect BCEs over all input data streams from a large

number of sources. Given an interest range parameter, BMQ

detects I and O events on data streams, where I and O events

representing a data stream coming into or going out from an

interest range, respectively.

3.2 Framework Overview

BCE1(I, R1)

Registered
BMQs

R1: 10 < value

R2: 11 < value < 13

…….

Data Streams

� �

Primitive Events

10 12 13 12 14

9 11 10 13 12

10 11 13 13 11

BCE2(O, R2)

BCE3(O, R4)

…………..

…………..

BCE-Processor Complex
Event Processor

BCE1

COUNT

BCE2

BCE3

Large-scale, Sensor-rich

Ubiquitous Environment

NOT

SEQ

AND

Fig.1. Framework overview and processing flow

Our work targets middle-tier framework between large-scale

advanced monitoring applications, and mobile and sensor

networks. Atop our framework, various applications can be easily

developed by registering their own monitoring queries and run

concurrently. As shown in Figure 1, the framework continuously

receives a huge amount of data streams from various large-scale

mobile and sensor networks (e.g., 3G phone network, WiMAX),

e.g., the locations of people, vehicles and environmental

information. BCE-Processor efficiently detects BCEs as primitive

events from massive data streams. We are designing and

implementing a complex event processor which incorporates

efficient BCE composition and aggregation techniques to support

advanced complex events such as RTE.

3.3 High-Performance Event Detection
As an initial approach to achieve high performance, BCE-

Processor develops a shared and incremental processing

mechanism. For shared processing, BCE-Processor adopts a query

indexing approach, thereby achieving a high level of scalability.

Once BCE-Processor is built on registered queries, only relevant

queries are quickly searched for upon an incoming data. The main

innovation of BCE-Processor compared to previous approaches is

that BCE-Processor develops and operates over a stateful index.

Existing query indices are stateless and optimized only for one-

time searching. However, it is extremely important to optimize the

index for consecutive searching since the query index is

repeatedly searched as data continuously arrives. The proposed

BCE-Processor holds the state of the last evaluation. It is

structured so that, upon a new data input, the evaluation is

efficiently done by starting the operation from the last state.

For incremental processing, BCE-Processor utilizes the locality of

data streams. Data updates usually exhibit gradual changes more

often than abrupt ones. Thus, in many cases, the matching query

set for a data update will be equal to or overlap much with that for

the previous update. To fully utilize this fact, BCE-Processor

calculates the difference of matching queries in advance and

accordingly partitions a domain space. Upon data arrival,

evaluation can be quickly done by simply traversing a small

number of the partitioned segments without any complicated

computation.

To further improve performance, we are considering applying

various techniques such as event query planning, lazy evaluation,

event graph sharing, and intermediate results reduction.

4. REFERENCES
[1] S. Chakravarthy and R. Adaikkalavan, “Ubiquitous Nature of

Event-Driven Approaches: A Retrospective View (Position

Paper), Proc. Dagstuhl Seminar 07191, 2007.

[2] K. Cho, I. Hwang, S. Kang, B. Kim, J. Lee, S. Lee, S. Park,

Y. Rhee, and J. Song, “HiCon: A Hierarchical Context

Monitoring and Composition Framework for Next

Generation Context-aware Services”, IEEE Network, July

2008.

[3] V. Garg, R. Adaikkalavan, and S. Chakravarthy, “Extensions

to Stream Processing Architecture for Supporting Event

Processing”, Proc. DEXA, 2006.

[4] L. Golab and M. Tamer Ozsu, “Data Stream Management

Issues – A Survey”, SIGMOD Record, 2003.

[5] J. Lee, Y. Lee, S. Kang, S. Lee, H. Jin, B. Kim, and J. Song,
"BMQ-Index: Shared and Incremental Processing of Border

Monitoring Queries over Data Streams”, Proc. MDM, 2006.

